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A~tract--A simple analogy between a multiparticle suspension and a single particle in a tube has been 
obtained by using the concept of "hydraulic diameter". Fully theoretical derivations for the effect of the 
wall on the single particle enable the solid-fluid interaction force to be estimated with no empirical input 
for the viscous and the inertial flow regimes. The analogy is successfully tested in the intermediate flow 
regime and finally the expansion characteristics of homogeneous fluidised beds is obtained, in good 
agreement with the Richardson & Zaki (1954) equation, by using experimental data on the terminal 
settling velocity of a lone particle in a tube. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

The fluid dynamic description of multiparticle solid-fluid systems presents unresolvable difficulties 
when the subject is tackled from a purely theoretical point of view: the effect of the presence of 
neighbouring particles on a specific particle has been quantified theoretically only in the viscous 
flow regime, and there only for limited cases as for example fixed spatial arrangement of particles 
(Happel 1958), or random dilute suspensions (Batchelor 1972). 

In contrast, semi-empirical or empirical approaches have flourished, in which the par- 
ticle-particle fluid dynamic interaction is represented in a simplified yet satisfactory manner: typical 
examples are the pseudo-fluid model and the analogy with the flow in straight pipes. In the 
pseudo-fluid approach the effect of  the surrounding particles on the drag force on a given particle 
is accounted by modifying, somewhat arbitrarily, the fluid density and viscosity; on the other hand 
in the analogy with flow in pipes the hydrodynamic fluid-particle interaction in multiparticle 
systems is inferred from the knowledge of the tube wall-fluid interaction in empty pipes, on the 
basis of  a geometrical analogy. These approaches have been recently reviewed and discussed at 
length (Di Felice 1995). 

The analogy with flow in pipes has been particularly popular for fluid flow in porous media, the 
Carman-Kozeny and Burke-Plummer equations for the pressure drop in fixed beds, for the viscous 
and inertial regimes respectively being striking examples (Bird et al. 1960). In this work a similar 
operation is attempted by considering the fluid dynamic analogy of a particle in a multisphere 
suspension and a lone particle in a cylindrical tube. The influence of the surrounding spheres on 
the drag force acting on a test sphere is estimated from the knowledge of  the effect of the tube 
wall on the drag force acting on a single sphere. 

The tube wall and the particle suspension effect the hydrodynamics in a similar way: they restrict 
the area available for fluid flow and, as a result, increase the drag force on the test particle. The 
effective distance of the surrounding particles from the test particle (quantified by the voidage 
fraction, E) corresponds to the distance from the wall to the single particle in the tube (quantified 
by the ratio of  the particle to tube diameter d/D = 2). 

The potential advantage of  this approach lies in the fact that a single sphere in a tube is more 
easily treated theoretically than the corresponding solid-fluid suspension. This is because in such 
system only one fluid dynamic interaction, namely the particle-wall interaction, need be considered. 
On the other hand, the particle in a suspension interacts with all the other particles, so that a large 
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number of interactions have to be taken into account in that case. The same advantage applies 
even to experimental studies as working with one particle is certainly easier than working with 
many. 

This idea is by no means new. At the end of last century Munroe (1888) obtained, from 
an intuitive reasoning, that today would be regarded as cell model approach, the following 
equivalence 

~. = (1 - -  E )  1/3. [1] 

He then went on to measure experimentally the hindering effect of  the wall on a single sphere 
as a function of 2, and was thereby able to estimate the minimum fluidisation velocity of 
the equivalent solid-liquid system by means of [1] in satisfactory agreement with measured 
values. 

Munroe's work related to systems in the inertial flow regime, whereas here we will consider the 
whole Reynolds number range; the analysis will still be limited, however, to spherical particles and 
cylindrical tubes. 

2. THE P A R T I C L E - I N - A - T U B E  A N A L O G Y  

The geometrical analogy 

We can start by considering a homogeneous suspension of solid spheres: the well known analogy 
with flow in a cylindrical wall tube considers the fluid to be moving, relative to the wall, with 
velocity uc equal to the actual fluid-solid relative velocity in the suspension, Uo/E (Uo being the fluid 
superficial velocity when the solid are at rest). The equivalent tube diameter (the 'hydraulic 
diameter') is given by: 

2Ed 
Dh -- 3(1 -- e)" [2] 

This equivalence is illustrated in figure 1. 
The next step is to move from the system of  figure 1 to the case we consider here, depicted in 

figure 2: this involves inserting in both the empty tube and in the suspension a foreign sphere 
identical to those making up the multiparticle system. The suspension has to rearrange itself in order 
to accommodate the new sphere; it does so in order to preserve the same average properties, 
including hydraulic diameter, [2], as before the insertion: nothing changes. But for the tube we must 
consider the change in the hydraulic diameter brought about by the included particle. The dominant 
effect of drag on the particle in the tube will be felt close to its horizontal circumference where the 
fluid velocity is a maximum; the hydraulic diameter at this plane, equated to the hydraulic 
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Figure 1. The analogy between a multiparticle suspension and an empty tube. 

1~ UO 
U c :  



THE PARTICLE-IN-A-TUBE ANALOGY FOR A MULTIPARTICLE SUSPENSION 517  

O 0  0 0 O 0  0 r ,  O 0  
o o  o oO o o  o O oo 
oOooo Oo OOo 

1'~0 

D=Dh+d 

U o 

Figure 2. The analogy between a multiparticle suspension and a single particle in a tube. 

d iameter  o f  the suspension Dh, leads to 

D =Dh+d [31 

and the ratio 2 for the systems in figure 2 is then obta ined by [2] and [3]: 

3 ( l - - E )  
2 - - -  [41 

3 - E  

Equa t ion  [4] is the relat ionship defining the geometrical  analogy of  a single particle in a tube 
with a mult ipart icle suspension: it is shown graphically in figure 3. 

As in the original analogy,  we will assume that  the fluid in the tube will approach  the particle 
with a velocity uc = UoR. 

The wall function and the voidage function 

A single particle in an infinite expanse of  fluid will experience a drag force given by 

pu~ red z 
FD0 = CD0 2 4 [5] 

where the drag coefficient, CD0, is a well known empirical  function o f  the particle Reynolds  number ,  
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Figure 3. The geometrical relationship between E and 2. 
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Table 1. 

Approaching velocity Drag 
of the fluid relative Reynolds number Drag force coefficient 

System to the particle, u dpu/la kCoRe 2 C o =f(Re) 

Single particle in an infinite u 0 Re 0 Foo Coo 
expanse of fluid 

Particle in a multiparticle u 0 Re 0 F D g(¢)Coo 
suspension 

Single particle in a very uc1 Rec FI~ CD¢ 
large tube 

Single particle in a finite uct Rec FD f(2)Co,: 
size tube 

Single particle in an infinite ut~ Ret~ FDt ~ CDtoo 
expanse of fluid in 
terminal condition 

Single particle in a tube in u t Ret FD f(2)Cot 
terminal condition 

tEqual to Uo/E in the present analogy. 

Re0 = dpuo/#,  as for  example  given by Dallavalle (1948), 

( 48 y 
CD0 = 0.63 + Re00., j . [61 

(The reader  is referred to table 1 for the meaning  o f  the different symbols  for  velocity, Reynolds  
number ,  drag  force and drag  coefficient used in this paper.)  

For  a given system, [5] can be writ ten as a funct ion of  the Reynolds  number  alone 

FDO = k CDo Reo 2 [7] 

where the coefficient k is given by 

k - re#2 
8p ' [8] 

The  presence o f  the other  particles in the suspension will effect the drag force. When  the 
superficial velocity is kept  constant ,  this effect is conveniently quantified by a voidage func t ion  g ( Q  
by which the drag  force on a single particle is to be multiplied in order  to obta in  the drag force 
on the same particle in a suspension 

FD = g (E)FD0 = g (E)kCoo Re02 . [9] 

O f  course, we would like to obta in  theoretical  expressions for g (Q;  in practice, as said in the 
introduct ion,  this is only possible for  limited cases and g(c)  has been evaluated numerical ly f rom 
exper imental  da ta  on fixed and suspended particle systems over  the full practical  range of  flow 
regime and particle concentra t ion  (Di Felice 1994). 

We can reason in an analogous  way for the quantif icat ion of  the wall effect on the drag on a 
single sphere in a bounded  med ium (in this case, for  the analogy,  the fluid velocity is u~ = uo/Q. 
When the wall effect is negligible (2 ~ 0) then, as in [7], 

FDc = kCD~ Re 2 [10] 

where Rec = dpu~/#, and CDc is the corresponding drag  coefficient obta ined as in [6] 

( 4.8 ,~z ( 4.8E0.5,~2 
CDc= 0 . 6 3 + ~ j  = 0 . 6 3 +  R-~oo.5 ] . [ l l ]  

The  wall will increase the drag on the particle by a factor  f (2) :  

FD = f(2)FD¢ = f(2)kCD¢ Re~ [12] 

which, in ana logy with the voidage function, we call wall func t ion ,  al though previous workers  have 
used slightly different names  such as "wall  correct ion fac tor"  ( H a b e r m a n  & Sayre 1958) or  "d r ag  
fac tor"  (Clift et al. 1978). It  must  be stressed that  the wall function is defined for  a constant  fluid 
app roach  velocity relative to the particle, as was for the case of  the voidage function. 
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If  we now suppose that the effect of the wall on the test sphere is equivalent to the effect of the 
neighbouring suspension spheres, then the two expressions for this drag force, [7] and [12], must 
be equivalent: 

FD = g (E )kC  2 Re0 = f ( 2 ) k C 2  Rec [131 

which, by taking into account the relation between Re0 and Reo simplifies to 

g(e)CmE 2 =f(2)Co¢. [14] 

Equation [14], coupled with the geometrical similarity [4], then provides the full analogy. 
If  we know f (2)  then we can obtain g(e). In order to test this relationship, we use it to estimate 

the voidage function from theoretical expression of the wall function. For cases where theoretical 
analyses are not available, we make do with experimental findings. The voidage functions so 
derived are all compared with corresponding empirical expressions: it has been demonstrated that 
for a wide variety of both fixed-bed and suspended-particle systems, the voidage function could 
be expressed as 

g(E) = E -a [15] 

where the exponent fl is dependent in the particle Reynolds number as illustrated in figure 4 (Di 
Felice 1994). 

3. VALIDATION OF THE ANALOGY 

The low Re  regime 

For this fluid dynamic regime [14] reduces to 

f (2)  
g(E) = [16] 

E 

The effect of the wall on the drag force on a sphere in the viscous flow regime has been extensively 
studied. Happel & Brenner (1973) have reported the most important investigations; of these the 
one most relevant is probably that based on the work of Haberman & Sayre (1958) where f (2)  
was derived for the whole range of 2. The results are presented both in analytical form, the 
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Figure 4. The exponent fl evaluated from a variety of  multiparticle-fluid systems. 
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E 
Figure 5. The voidage function evaluated with the present analogy in the viscous flow regime. Continuous 

line obtained from [17], points from tabled data of Paine & Scherr (1975). 

following relationship being valid for 2 values up to 0.6 

1 - 0.7585725 
f (2 )  - 1 - 2.10502 + 2.086523 - 1.706825 + 0.7260326 [17] 

and numerically for values of 2 up to 0.90 (Paine & Scherr 1975). 
Equation [16], together with the relationship between 2 and ~ [4], lead to estimates for g(E). This 

function is plotted, in logarithm coordinates, in figure 5, as a function of E. The figure shows a 
practically linear relationship, indicating that g(E) can be represented by [15]. In the specific case 
evaluated here, the parameter/3 is approximately 4.3. This finding compares well with experimental 
evaluations of the voidage function for multiparticle suspensions in the viscous flow regime. From 
figure 4 it is evident that/3 is around 3.7-4. 

The high Re regime 

The relation between wall and voidage function is, in this case, 

f (2 )  
g ( E ) -  E2 . [18] 

The theoretical derivation of the wall function in this regime is due to Newton (1687): 

1 
f (2 )  = (1 - 2:)z(1 - 0.522) . [19] 

The validity of  [19] has been recently verified for experimental conditions ranging over the whole 
spectrum of  2 (Di Felice et al. 1995). 

The voidage function is easily derived and it is plotted, in log coordinates, in figure 6. Again 
the voidage function can be approximate with little error by a straight line, the average slope/3 
being in this case close to 3.7, in excellent agreement with experimental findings for multiparticle 
suspensions. 

The intermediate flow regime 

Perhaps surprisingly, no theoretical derivation exists for the determination of the wall function 
in the intermediate flow regime. This lack of theoretical information leaves only the option of 
confronting the analogy with experimental data. 
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The most extensive work on the subject is certainly that of  Fidleris & Whitmore (1961). They 
measured the retarding effect of  the wall on the particle terminal velocity for the whole range of 
flow regime, and presented their results only in a graphical form. 

For  a particle in a tube under terminal conditions, uc = ut, the drag force is given by 

FD = FDt~ = kCot~ Ret:o~ • [20] 

From the Fidleris & Whitmore data the wall function can then be easily calculated from [12] 
as follows: 

CDt°° (Ut°°~ 2 [21] 
f (2 )  = --~-Dt \ Ut / " 

From the above equation, the voidage function for the corresponding multiparticle system is then 
obtained from [14] and [4]. For  one specific Reynolds number the result is shown in figure 7, where 
it can be seen that the voidage function can again be satisfactorily represented by an expression 
of  the type e -P. Values of fl have been calculated in this way for a discrete number of Reynolds 
numbers in the intermediate flow condition and they are depicted in figure 8. 

Although the absolute values reported in figure 8 should be used with some caution, due in part 
to the difficulty in extracting data from the original paper, it is clear that fl presents a minimum 
in the region of  Reynolds number between 50 and 100, in complete agreement with the finding for 
fluid-multiparticle systems. No theoretical explanation is available at the moment justifying the 
presence of  this minimum. 

4. THE EXPANSION C H A R A C T E R I S T I C  OF F L U I D I S E D  BEDS 

The simple analogy which has been suggested has proved effective in estimating the magnitude 
of the voidage function, once the wall function is known. From the voidage function we can then 
determine the particle-fluid drag force for all the solid-fluid two-phase systems, such as fixed or 
fluidised beds. 

Of  particular practical interest, is the determination of  the expansion characteristics of  
homogeneous fluidised suspensions; this expansion law is satisfactorily described by the empirical 
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Figure 6. The voidage function evaluated with the present analogy in the inertial flow regime. Line 
obtained from [19]. 
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Figure 7. The voidage function evaluated with the present analogy in the intermediate flow regime. Points 
obtained from the data of Fidleris & Whitmore (1961). 

Richardson & Zaki  (1954) equat ion  

u0 = C.  [221 
Utoo 

The parameter  n is funct ion of  the fluid dynamic  regime only, and figure 9(a) depicts the expansion 
characteristics for various systems utilising values of n as recommended in the original Richardson 
& Zaki  (1954) work. 
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Figure 8. The exponent ~ evaluated with the present analogy function of the Reynolds number. Points 
obtained from the data of Fidleris & Whitmore (1961). 
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Figure 9. The expansion characteristics of homogeneous fluidised beds. (a) Experimental expansions as 
reported by Richardson & Zaki (1954); (b) expansions evaluated with the present analogy. 

We are in a position now to be able to estimate the expansion of homogeneous fluidised beds. 
First of all, its relation with the voidage function should be recalled (Di Felice 1994) 

ut~ k C ~ o g ( O J  " 

The introduction of the relationship between wall function and voidage function, [14], leads to 

,,o ( co,= 3 o  t241 
• 



524 R. DI FELICE 

Again we can obtain simplified expression for the limiting flow regime: 

U 0 E 2 

ut~ f(2) 

for the viscous region, and 

[25] 

u0 = (  ¢3 ,]05 
L/tzc ~ f ~ ) /  [26] 

for the inertial region. 
If, like our case in the intermediate flow regime, the wall function is not known directly, but its 

magnitude can be inferred from experimental measurements of the retarding effect of the wall on 
the single particle terminal settling velocity, then a remarkably simple expression is obtained, from 
[21] and [24] 

U 0 Ht - E 1 5  [ 2 7 ]  
Ut~ Ut~ 

Figure 9(b) reports the expansion characteristics of fluidised beds as obtained with the present 
analogy. For the viscous and inertial regime, available theoretical expressions for the wall function 
have been used, [17] and [19], respectively, coupled with [25] and [26]. In the intermediate range 
of terminal Reynolds numbers the experimental findings of Fidleris & Whitmore (1961) have been 
utilised, coupled with [27]. 

A quite satisfactory agreement is evident when figure 9(a) and (b) are compared. 

5. CONCLUSIONS 

The proposed analogy between a single particle in a tube and a multiparticle suspension has 
proved to be quite successful: expressions for the interaction force in a solid-fluid system have been 
obtained starting from the knowledge of the effect of the wall on a lone particle in a tube. For 
the limiting flow regimes, this effect has been established theoretically: as a consequence we have 
been able to estimate the solid-fluid interaction force without any empirical input. 
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